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ABSTRACT: A versatile surface-functionalization strategy applicable to mesoporous silica nanoparticles, which could potentially
serve as drug delivery vehicles, is described that makes use of alkoxyamine tethers on the surface of the nanoparticles. A wide
variety of carbonyl compounds can be attached readily to these tethers under the mild conditions of oxime ether formation,
simply by incubating the chemically modified mesoporous silica nanoparticles with aldehydes or ketones in water.

The development of drug delivery vehicles promises to
improve the therapeutic efficacy of traditional chemo-

therapies in a number of ways. Carrier vehicles can concentrate
pharmaceuticals within diseased tissues,1 improve the pharma-
cokinetic properties2 of drug candidates, and have the potential
to achieve targeted drug delivery,3 thereby reducing the
exposure of healthy cells to harmful chemotherapeutics. Over
the past decade, mesoporous silica nanoparticles4 (MSNPs)
have emerged as a particularly promising drug delivery platform
on account of (i) their high surface areas and/or large interior
volumes,4 suitable for loading an array of therapeutic agents,
(ii) their ease of modification,5 which enhances their versatility,
as well as (iii) their biocompatibility,6 even at high doses of
silica nanoparticles. Previously, we and other groups have
explored novel (supra)molecular designs that exhibit stimulus-
responsive mechanized release of payloads7 and/or the
formation of MSNP-targeting agent conjugates for selective
recognition8 by cells. To improve the performance of these
“smart” MSNP-based materials for the widest number of
applications possible, methods for the surface modification of
MSNPs must be versatile yet simple. For applications in vivo,
the milieu of biochemical reactions must not interfere with the
surface attachment chemistry, resulting in unintended coupling
reactions or leading to defective materials.
A wide variety of targeting groups are currently under

investigation for pharmaceutical and drug delivery applica-
tions,9 with the majority of them being based upon endogenous
biomolecules, such as antibodies or folate. The introduction of
site-specific attachment groups into these biomolecules can
involve an intensive remodeling phase, involving chemical
modification with functional handles (e.g., biotin), purification

by substrate recognition chromatography, and then cross-
coupling to produce the desired functional biomolecule
conjugate. As the number of “state-of-the art” targeting
molecules expands, highly modular surface attachment
chemistries are required for their rapid integration with
nanoparticle drug delivery vehicles such as MSNPs. In attempts
to address this challenge, research into a single, but highly
versatile surface chemistry for interfacial functionalization is
desirable. Since most targeting groups are biomolecular in
nature, we sought to create a method for surface attachment
that uses mild, aqueous reaction conditions and functional
groups that can be incorporated readily into biomolecules in a
site-specific manner.
Herein, we report the development of a multipurpose,

surface-modification chemistry for MSNPs using alkoxyamine
tethers. This particular brand of reactive end group was selected
because it is well-known to condense with carbonyl groups
under mild conditions to form oxime ethers,10 which are stable
for days in a physiological setting. Besides the high-yielding and
mild nature of this ligation, it also takes advantage of extremely
convenient carbonyl coupling partners, namely aldehydes or
ketones. For biomedical applications, carbonyl groups can be
introduced into biomolecules using a variety of genetic,
chemical, and enzymatic methods,11 which are comparable
with traditional biomolecule modification techniques. Alde-
hydes and ketones are also of significant interest for use in
biological systems because they are not commonly found in
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naturally occurring biopolymers but are often present in small-
molecule drugs or metabolites, making the chemistry
unresponsive to cellular machinery but reactive toward critical
small molecules. Another aspect of the oxime ether tether we
exploit here is its reversible formation. The dynamic nature of
the oxime bond has enabled us to characterize the surface
exchange between small molecules of various structural
complexity with MSNPs and may facilitate future applications
in the realm of mixed-monolayer nanoparticles. In this work, we
have (i) developed an alkoxyamine silyl ether tether to decorate
the surface of MSNPs, (ii) attached a variety of aldehyde- and
ketone-containing small molecules, and (iii) quantified their
attachment by exploiting their dynamic covalent chemistry in
combination with 1H NMR spectroscopy.
Nanoparticles (MCM-41) were prepared according to

established literature procedures12 using cetyltrimethylammo-
nium bromide as a template for pore formation. Extraction
using HCl in MeOH was performed twice to ensure removal of
the template from the nanopores. The MCM-41 nanoparticles
were washed thoroughly in neutral solution prior to surface
modification. Transmission electron microscopy (TEM), which
was used to characterize (Supporting Information, Figure S1)13

the nanoparticles at this stage, revealed that they are
approximately 150 nm in diameter with regular, tessellated
channels.
To install a reactive alkoxyamine tether for oxime ligation to

aldehydes and ketones, a bifunctional linker 1 was designed.
The linker consists of a triethoxysilane end group for
attachment to the MSNPs, connected by a short dialkyl-
thioether chain to a protected alkoxyamine. Acetone was
selected as the protecting group because it could be removed to
yield the free alkoxyamine under mild conditions, employing a
dynamic covalent chemistry exchange protocol mediated by an
excess of hydroxylamine. The linker 1 was prepared (Scheme
1) in two steps from the commercially available acetone oxime.

The synthetic sequence involved allylation to form acetone O-
allyl oxime 214 prior to thiol−ene coupling with 3-
mercaptopropyl triethoxysilane in the presence of a radical
initiator to form the linker 1.15

The MCM-41 nanoparticles were modified (Scheme 2) with
linker 1 by stirring them together in PhMe at 110 °C for 16 h.
Subsequently, the excess of 1 was removed by washing the
nanoparticles in PhMe five times. The solvent was then
exchanged by suspending the nanoparticles in MeOH,
centrifuging, decanting the supernatant, and then repeating
the procedure a total of four times. The resulting Oxime-
MSNPs16 were analyzed by TEM (Figure 1a−c), dynamic light
scattering (Supporting Information, Table S2),13 and scanning
electron microscopy (Supporting Information, Figure S1)13 in
order to confirm that the integrity of the mesoporous silica
scaffold is not adversely affected by the deposition of 1.
To activate the Oxime-MSNPs for oxime ligation with an

aldehyde or a ketone, the acetone protecting group was

removed, resulting in nanoparticles with free alkoxyamine
tethers, namely H2NO-MSNPs.17 This deprotection was
achieved by suspending the nanoparticles in a solution of
hydroxylamine hydrochloride in aqueous acetate buffer and
heating to 65 °C for 1 h. The resulting nanoparticles were
washed by resuspending them in solvent, centrifuging, and
decanting the solvent four times using a sequence of water−
MeOH, MeOH, and then CH2Cl2. Experiments indicated
(Supporting Information, Table S3)13 that the proportion of
acetone end groups that are deprotected to reveal the free
hydroxylamine end group can be enhanced by repeating this
sequence. For simplicity, however, subsequent substrate
screening was performed using the H2NO−MSNPs obtained
after just one round of deprotection.
With the reactive H2NO−MSNPs in hand, a variety of

aldehyde- or ketone-containing compounds could be ligated to
the nanoparticles using a mild and straightforward protocol.
The ligation was achieved simply by suspending the nano-
particles in an aqueous solution of a carbonyl substrate and
incubating at room temperature for 16 h. The functionalized
nanoparticles were then rinsed twice with water, MeOH, and
then CH2Cl2 in order to ensure that the excess of reagent was
removed. One common challenge in the chemical functional-
ization of nanoparticles is quantifying the extent of attachment.
In this system, we were able to develop a method to
approximate the amount of carbonyl substrate ligated to the
nanoparticle surface by exploiting the dynamic nature of the
oxime bonds. After the carbonyl derivatives were tethered
covalently to the nanoparticles, they could be cleaved off and
into solution through exchange18 with an excess of a competing
carbonyl compound, e.g., acetone. 1H NMR spectroscopy was
then used to measure the amount of substrate in solution with
maleic acid as an internal standard. A representative 1H NMR
spectrum that confirms the successful ligation and subsequent
cleavage of salicylaldehyde is shown in Figure 2.
This dynamic exchange, followed by analysis employing 1H

NMR spectroscopy,18 was used to assess (Table 1) the
generality of the carbonyl ligation to the H2NO−MSNPs. A

Scheme 1. Synthesis of Linker 1

Scheme 2. Chemical Modification of MCM-41

Figure 1. TEM images of Oxime-MSNPs: (a) 150,000× magnifica-
tion; (b,c) 500,000× magnification of nanoparticles at two different
locations on the dried nanoparticle aggregate.
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small selection of substrates was chosen to span a variety of
different carbonyl derivatives. Aryl aldehydes (entries 1 and 2),
aryl ketones (entry 3), and alkyl derivatives (entries 4 and 5)
were all found to be compatible with the method without any
need to alter the simple ligation conditions. Compounds that
lack a ketone or aldehyde functional group were tested (entries
6 and 7) as negative controls to check for nonspecific
interactions.
Neither dimethylformamide (DMF) nor glucose were

observed to bind to the H2NO−MSNPs, indicating that, in
these cases at least, there are not any strong nonspecific
interactions in the absence of a covalent attachment. This
observation confirms the specificity of the surface functionaliza-
tion and the validity of the method of quantification. It is
particularly relevant to drug delivery and the use of
biomolecules that the amide of DMF and the aldehyde of
glucose’s open-chain isomer do not appear to interfere with the
ligation chemistry. Also of note, we screened a biologically
relevant and rather more complicated formyl-containing
compound, streptomycin sulfate, an antibiotic used to treat
tuberculosis. Although we envision that the oxime surface
chemistry will find use in the attachment of targeting groups,
this example demonstrates that it can also be used to attach
covalently any molecule containing an accessible and reactive
carbonyl group to MSNPs.
Mesoporous silica nanoparticles provide a promising plat-

form to entrap small molecules in their interior nanopores, as

long as robust chemistry is available for the introduction of
additional functionality to their exterior. We have developed an
oxime-based surface modification chemistry and demonstrated
its utility in attaching ketone- and aldehyde-containing
substrates, as well as a structurally complex antibiotic. The
chemistry is performed under mild aqueous conditions. At the
same time, oxime formation10 is selective for aldehydes and
ketones, making it orthogonal to the majority of the bonding
motifs present in biological molecules. The chemistry that we
have developed offers a versatile platform that could enable the
production of mixed-monolayer mesoporous silica nano-
particles.
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cleaveda

(nmol)
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